ТЕОРИЯ
Тепловидение 

Тепловидение, получение видимого изображения объектов по их собственному либо отражённому от них тепловому (инфракрасному) излучению; служит для определения местоположения и формы объектов, находящихся в темноте или в оптически непрозрачных средах, а также для изучения степени нагретости отдельных участков сложных поверхностей и внутренней структуры тел, непрозрачных в видимом свете. Каждое нагретое тело испускает тепловое излучение, интенсивность и спектр которого зависят от свойств тела и его температуры. Для тел с температурой в несколько десятков °С характерно излучение в инфракрасной области спектра электромагнитных колебаний. Инфракрасное излучение невидимо для человеческого глаза, но может быть обнаружено различными приёмниками теплового излучения и тем или иным способом преобразовано в видимое изображение. 

 

История создания

Первые тепловизионные системы были созданы в конце 30-х гг. 20 в. и частично применялись в период 2-й мировой войны 1939—45 для обнаружения военных и промышленных объектов; в этих системах использовались тепловые приёмники (болометры, термопары), преобразующие инфракрасное излучение в электрические сигналы. С помощью оптико-механической сканирующей системы отдельные точки объекта попеременно проецировались на приёмник, а полученные с него электрические сигналы подавались на вход электроннолучевой трубки, аналогичной приёмной телевизионной трубке. На люминесцентном экране трубки формировалось видимое изображение объекта. В 70-х гг. такие системы, получившие название тепловизоров, продолжают успешно развиваться, причём в них используют не только тепловые, но и охлаждаемые фотоэлектрические приёмники (например, на основе InSb или HgCdTe2), которые способны воспринимать излучение с длиной волны до 5—6 мкм (максимум теплового излучения при комнатной температуре приходится на длины волн около 10 мкм), а также пироэлектрические приёмники.

Эти приёмники обладают высокой чувствительностью (соизмеримой с флуктуациями теплового излучения). что позволяет получать с их помощью видимые изображения объектов, находящихся на расстоянии до 10—15 км и имеющих температуру поверхности, отличающуюся от температуры окружающей среды менее чем на 1°С. Такие тепловизоры позволяют обнаруживать разность температур (до 0,1 °С) отдельных участков человеческого тела, что представляет значительный интерес для ранней диагностики образования опухолей и нарушений системы кровообращения.

Принцип действия

В конце 60 — начале 70-х гг. были созданы принципиально новые, более простые устройства, применение которых предпочтительнее, если только их чувствительность оказывается достаточной. В этих устройствах тепловое изображение объекта непосредственно (без промежуточного преобразования инфракрасного излучения в электрические сигналы) проецируется на экран, покрытый тонким слоем вещества, которое в результате какого-либо физико-химического процесса, происходящего при его нагреве, изменяет свои оптические характеристики (коэффициент отражения или пропускания видимого света, интенсивность или цвет собственного свечения и т. д.). На экранах таких устройств можно наблюдать видимые изображения объектов и фотографировать их. В качестве температурно-чувствительных веществ используют жидкие кристаллы, кристаллические люминофоры, тонкие плёнки полупроводников,магнитные тонкие плёнки, термочувствительные лаки и краски и др. Так, жидкие кристаллы по мере нагревания постепенно изменяют свой цвет (и его оттенки) от красного до фиолетового, причём многокомпонентные смеси холестерических жидких кристаллов имеют температурный интервал цветовой индикации менее 0,1 °С. Термочувствительные краски при нагреве один или два раза изменяют свой цвет (обычно необратимо), фиксируя тем самым одно или два значения температуры, что удобно в тех случаях, когда достаточно узнать, нагрет ли исследуемый объект (например, деталь машины) до некоторой критической температуры.

В некоторых полупроводниковых плёнках (особенно в плёнках Se и его производных) с повышением температуры область прозрачности смещается в сторону длинных волн, что позволяет, применяя дополнительный источник видимого света, регистрировать изменение их температуры на 1—5 °С. Применение в тепловизоров люминофоров основано на явлении тушения люминесценции яркость свечения некоторых люминофоров (например, соединения ZnS CdS Ag Ni). возбуждённых ультрафиолетовым излучением, резко уменьшается по мере их нагревания. Эти люминофоры позволяют визуально наблюдать изменение температуры на 0,2—0,3 °С, причём эффект тушения полностью обратим. Приборы, основанные на применении люминофоров, позволяют видеть не только тепловые лучи, но и радиоволны. Всовременных устройсвах место ПЗС датчиков большинство тепловизоров используют КМОП-матрицу. Наиболее часто используются матрицы из антимонида индия InSb, арсенида галлия GaAs, индия In, теллурид ртути HgTe и кадмия Cd.

назначение

Создание термограмм на основе тепловых изображений нашло много применений. Например, пожарные используют их для обнаружения в условиях задымления людей и установления очагов возгорания. С помощью тепловых изображений в технике, обслуживающей линии электропередач обнаруживают перегрев в местах соединений и части, находящиеся в аварийном состоянии, требующие устранения потенциальной опасности. Когда нарушена теплоизоляция, строители могут видеть утечку тепла и предотвратить неисправности при охлаждении или обогреве системами кондиционирования воздуха.

Тепловизоры, делающие снимки, также устанавливаются в некоторых автомобилях класса «люкс» для помощи водителю, например, в некоторых моделях «Кадиллак» с 2000 года. Некоторая физиологическая деятельность организма, требующая более пристального внимания у людей и теплокровных животных, также может быть наблюдаема при помощи тепловых изображений. Внешний вид и работа современных тепловизионных систем часто похожи на работу телевизионной системы.